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Chemical epitaxy based on the self-assembly of block copolymers is viewed as a promising technique
to achieve ordered patterns on a large scale. Herein, we study the kinetics of lamellar formation of
block copolymers under the direction of sparsely stripped patterns using cell dynamics simulations of
the time-dependent Ginzburg-Landau theory. First, a scaling law is unveiled with the ordering time of
lamellae, tp, with respect to the multiples between the periods of lamellae and stripe patterns, which
is consistent with the power law evolution of the correlation length existing in the bulk phase of
lamellae. Second, the tolerative windows of perfect order, with deviation from integer multiples, are
also estimated from the aspect of kinetics. The results of the ordering time and tolerative windows are
of great interest for relevant experiments or applications. Finally, a two-stage evolution is explored
during the pattern formation of chemical epitaxy by probing into the evolution of defects, which is
of fundamental interest for us to understand the coarsening kinetics of block copolymers under the
direction of chemical patterns. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4830396]

I. INTRODUCTION

Directed-assembly of block copolymers (BCPs) has been
viewed as a promising “bottom-up” strategy in nanotechnol-
ogy due to its ability to generate perfectly ordered nano-
structures with feature size of sub-30 nm and with a molecular
precision.1–7 Thin films prepared via this technique have been
applied in many fields, including fabrications of microfluidic
devices, quantum dots, magnetic storage media, flash memory
devices, integration in advanced lithography.3, 8–13 Recently in
semiconductor industry, conventional photolithography can-
not meet the demands of shrinking scale of devices, whose
resolution requirements are already beyond the ability of vis-
ible light.14 It is increasingly complicated and hugely costly
to bring the resolution of photolithography to sub-100 nm and
below. So directed assembly of BCPs has emerged as a fasci-
nating alternative approach to overcome the resolution limita-
tion in semiconductor industry.13, 15–18

BCPs are a class of macromolecules composed of chem-
ically distinct blocks. Driven by immiscibility and connec-
tivity between blocks, BCPs separate into microphase and
thereby form a rich variety of periodic structures. For diblock
copolymer, the simplest BCP, its equilibrium morphologies
such as lamella, gyroid, Fddd, hexagonally packed cylinder,
and a lattice of body-center-cubic spheres have been not only
experimentally screened but also theoretically verified.19 Im-
portantly, their feature sizes, in a range of 10–100 nm, make
them of particular interest for nanomanufacturing. In the typ-
ical soft condensed systems of BCPs, however, defects are
usually unavoidable because their appearance only results in a
penalty of minuscule free energy. Consequently, these emerg-
ing defects destroy the long-range order in BCPs formed mor-

a)Author to whom correspondence should be addressed. Electronic mail:
weihuali@fudan.edu.cn

phologies, and thus keep BCP self-assembly from practical
applications. Pursuing the goal of realizing full potential of
BCPs, researchers propose a great many approaches to yield
defect-free patterns, such as chemical epitaxy, topographi-
cal epitaxy, solvent-assisting annealing, electric fields, ther-
mal gradients, and shear flow.2, 4, 17, 20–29 These approaches
succeed in varied degrees on the road of guiding the self-
assembly of BCPs and achieving long-range order in thin
films.

Among approaches mentioned above, chemical epitaxy
which makes use of selective interactions between patterns
on modified substrates and blocks of polymer to direct the
assembly of BCPs, was early reported in 1997 by Rockford
et al.30 In this pioneering work, the pattern order was
enhanced within a very limited extent. Many research groups
have focused on the development of this promising technique
by precisely designing chemical patterns. The research group
of Nealey successfully imparts both long-range translation
and orientation order in thin films of hexagonally packed
cylindrical and lamellar BCPs respectively.3, 4, 31, 32 Addition-
ally, non-regular and non-periodic ordered patterns could be
fabricated on a large scale of microns utilizing this strategy as
well.4, 33 In these preliminary studies, periodic patterns, only
one-to-one corresponding to the feature size of BCPs in bulk,
are achieved on patterned substrates by Nealey et al.3, 4, 31, 32

These substrates are usually obtained via electron-beam
lithography (EBL) due to its ability of producing feature
sizes of 15–25 nm. Considering EBL as a serial processing
technique, time consumed in preparation of master substrates
is undesirably long.29 It necessitates the introduction of sub-
strates with sparsely chemical patterns in chemical epitaxy.
Recently, several groups independently apply this technique
in fabrications of thin films with perfectly ordered lamellae or
hexagonally packed cylinders under the guidance of sparsely
chemical patterns.34–37 For lamellar patterns, the directing

0021-9606/2013/139(19)/194903/9/$30.00 © 2013 AIP Publishing LLC139, 194903-1
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efficiency of substrates in these experiments has been
drastically improved, e.g., reaching a multiple of four.35

Improvement of directing efficiency offers a direct way to
the reduction of making cost of substrates, and thus advances
BCP chemical epitaxy toward practical applications. Density
multiplication (DM), the ratio between domains and substrate
patterns, is a convenient quantity to evaluate the directing
efficiency of sparsely chemical substrates. Such is it natural
that researchers are expecting substrates with sparser chem-
ical patterns for higher efficiency. But the directing ability of
substrates will be attenuated when the patterns on substrates
are getting sparser, and eventually fails with defects. This
gives rise to a limit of DM of effective substrates. The
limit of DM provides a useful guide for experiments to
adopt an appropriate pattern period during the preparation
of substrates. Suffering from the small excess free energy
of defects and the concomitant extremely long relaxation
time, it is formidable for bulk BCPs to self-assemble into
large-scale ordered morphologies. The substrate patterns not
only suppress the emergence of defects but also facilitate their
annihilation, and therefore accelerate the ordering process of
the entire sample. If and only if the ordering time when the
entire sample evolves into perfect order, tp, is feasible in real
experiments, the implementation of substrate patterns makes
sense. Therefore, it is mandatory to carry out systematic
explorations on the ordering kinetics of BCP assembly under
the direction of chemical patterns.

Not only it should be emphasized from the application’s
perspective, understanding of coarsening kinetics of BCPs but
also attracts enormous attention of theoretical researchers in
academia. During past decades, coarsening kinetics of BCPs
is yet less understood because of its well complexity. The
long-range order often gives way to defects that would main-
tain the correlation length, ξ , within a range of 10–100L0

where L0 is the bulk period of morphologies formed by BCPs.
Harrison et al.38 and Ruiz et al.,39 respectively, studies the
time dependence of the correlation length and conclude that
it increases with time as ξ ∼ tη. Although the values of η in
their studies are different, they are all around 0.25. These re-
sults are well consistent with theoretical predictions of Vega
et al.40 and Vinals et al.41 The value of η is supposed to de-
pend on the strength of phase separation, thermal noise, and
specific types of length scales studied.40 Anyhow, the evolu-
tion of correlation length as time obeys a universal power law.
As a result of this slow coarsening kinetics, ordered regions
rarely extend beyond microns. In typical cases, a long time
annealing (e.g., 3–7 days) is required to attain nanostructures
with desirable ordering degree via BCPs self-assembly.3, 4, 42

A number of theoretical researchers have dedicated to
the study of BCPs assembly directed by chemical patterns.
With Monte Carlo (MC) simulation on a lattice model, Wang
et al. investigate morphologies of lamella-forming BCPs un-
der the direction of surface patterns.43 Recently, a MC simula-
tion technique based on the coarse-grained model is success-
fully developed by de Pablo et al., and used to rationalize ex-
perimental observations on the morphologies formed by sym-
metric BCPs confined between two substrates with chemical
patterns.44 Additionally, with this simulation scheme, Nagpal
et al. study the stabilities of typical defects observed in thin

films of lamella-forming BCPs on stripped substrates by ex-
periments from the aspect of thermodynamics.45 Focusing on
the one-to-one directing case, they have investigated the in-
fluences of the strength of potential fields and the incommen-
surability between the BCP lamellae and the substrate stripes
on the stability of different defects. Their results suggest that
the strength of potential fields plays a critical role on destabi-
lizing the defects, i.e., directing the morphology toward per-
fect order. In contrast, the self-consistent field theory (SCFT),
which is based on the description of continuous configura-
tions, is an alternative approach in the study of BCPs self-
assembly. With two-dimensional (2D) SCFT calculations, Pe-
tera et al. study the formation of lamellar patterns on patterned
substrates.46 It is found that tilt lamellae arise as a compro-
mise while the period of chemical patterns is larger than the
bulk one. Besides the formation of lamellar patterns, a num-
ber of SCFT studies are carried out to investigate the phase
behaviors of cylinders. Complementary to numerical SCFT,
simulations of single chain in mean field are performed to ex-
amine morphologies formed by asymmetric BCPs and many
complex morphologies are explored.47 These previous theo-
retical results improve our understanding on the equilibrium
phases of BCPs in chemical epitaxy. However, in contrast to
most of attention on the formation of diverse morphologies
within a few periods, the kinetics of structure formation is still
in the infancy stage. Additionally, to guide the state-of-the-
art experimental research on the BCPs lithography, aiming to
generate defect-free patterns on a large scale, kinetic simu-
lations have to be performed on macroscopic sizes compa-
rable to experimental samples. Accordingly, a high-efficient
kinetic method of coarse-grained model is urgently needed
for this task. The time-dependent Ginzburg-Landau (TDGL)
theory, which is a phenomenological kinetic model and its
implementation by cell dynamics simulation (CDS) has been
proven to be high efficient, satisfies this demand.16, 48–50 As
a successful demonstration, Li et al. study defect evolutions
in the morphologies of hexagonal cylinders in chemical epi-
taxy by virtue of TDGL simulations.51, 52 A bottleneck of
the directing efficiency, DM ≤ 25, is proposed because of
the spinodal phase separation. To date, this efficiency limit
is not exceeded by relevant experiments.6 Subsequently, Xie
et al. develop a new strategy based on heterogeneous nucle-
ations demonstrated by TDGL simulations on diblock copoly-
mer/homopolymer blends, which tremendously improves the
directing efficiency, i.e., DM as large as 128.53 Based on these
fruitful achievements, TDGL is speculated as an effective tool
for the description of collective kinetics of BCPs, especially
for cases where the size-effect and computation-efficiency are
of particular importance.

Periodic lamellar domains are one of geometric sim-
ple patterns useful for nanofabrication in semiconductor
industry.33 A number of studies, including experiments and
simulations, are attracted and focused on manufacturing or-
dered lamellar patterns by the directed self-assembly of BCPs.
However, there still exist several unresolved and attractive is-
sues, including the ordering time (i.e., the annealing time in
experiments), the directing efficiency (or the DM bottleneck),
and the tolerative resolution in the fabrication of substrate pat-
terns. Aiming to solve above problems of interest, we focus
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on the formation kinetics of lamellar patterns of symmetric
BCPs under the direction of chemical patterns using high ef-
ficient TDGL simulations.

II. THEORY AND MODEL

A system composed of symmetric BCPs with equal
monomer size and the total polymerization N, is considered
by us. Each polymer chain consists of A and B blocks with
equal polymerization, i.e., NA = NB, which gives the vol-
ume fraction fK = NK/N = 0.5 (K = A or B). The kinetics
of phase separation in BCPs can be described by the Cahn-
Hilliard model, where the difference of local volume fractions
φ(r, t) = φA(r, t) − φB(r, t) is chosen as the order parameter.
For this BCP sample of conserved order parameter, the dy-
namic equation is given as

∂φ(r, t)
∂t

= M∇2 δF [φ(r, t)]
δφ(r, t)

+ ξ (r, t), (1)

where M is a phenomenological positive constant and
1
V

∫
V

drφ(r, t) = φ = fA − fB = 0. The last term ξ (r, t) in
Eq. (1) is a thermal noise term, satisfying the fluctuation-
dissipation theorem:

〈ξ (r, t)〉 = 0,

(2)
〈ξ (r, t)ξ (r′, t ′)〉 = −η0M∇2δ(r − r′)δ(t − t ′),

where η0 indicates the magnitude of the thermal noise. The
term of free energy in Eq. (1), F[φ(r, t)], is composed of three
parts, the short-range energy FS[φ(r, t)], the long-range en-
ergy FL[φ(r, t)] and external field adsorption energy:

F [φ(r, t)] = FS[φ(r, t)] + FL[φ(r, t)] +
∫

drHext(r)φ(r, t).

(3)

The short-range energy, arises from the local interactions be-
tween blocks, is written as type of Ginzburg-Landau energy:

FS[φ(r, t)] =
∫

dr
{

C

2
(∇φ(r, t))2 + W [φ(r, t)]

}
. (4)

Here the constant C is the diffusion coefficient. The sec-
ond term of RHS, W [φ(r, t)], is defined by dW [φ(r, t)]/dφ

= −A tanh[φ(r, t)] + φ(r, t), where A determines the immis-
cibility degree between the two species. The long-range en-
ergy results from the connectivity of A and B blocks, which
alters macroscopic phase separation into microscopic one. In
1986, Ohta and Kawasaki derived an effective functional form
of the long-range interaction for diblock copolymers,54 which
is given by a Green function as

FL[φ(r, t)] = α

2

∫
dr

∫
dr′G(r, r′)δφ(r, t)δφ(r′, t)

(5)
−∇2G(r, r′) = δ(r − r′),

where δφ(r, t) = φ(r, t) − φ, and the constant α is coherent
to the polymerization and the volume fraction. The last term
in Eq. (3) is the external field energy acting as the selective
interaction of the patterns. A similar potential-well function

as our previous work51 is applied to describe the adsorption
of each striped potential well for A-blocks, which is aligned
along Y-axis:

Hext(x, y) = −1

2
V0{tanh[(−|x − xi | + η)/λ] + 1}, (6)

where xi (i = 0, 1, . . . , Ns) is the position of the ith potential
well, and while |x − xi| ≥ 2η, Hext(x, y) = 0. Here, V0, η,
and λ quantify the field strength, the width, and the steepness
of each potential well, respectively. The integer Ns is the re-
peating number of striped patterns across the entire sample.
Inserting Eqs. (3)–(6) into Eq. (1), we obtain the final evolu-
tion equation of morphologies as

∂φ(r, t)
∂t

= M∇2{−C ∇2φ(r, t) − A tanh[φ(r, t)]

+φ(r, t) + Hext(r)}
−M αδφ(r, t) + ξ (r, t). (7)

For the sake of efficiency, we consider the cases of thin films
in 2D simulations, where the small film thickness has neg-
ligible impact on the formation of patterns. This simplifi-
cation enables us to focus on the samples as large as mi-
crons. By virtues of CDS simulation, we simulate Eq. (7) on
a square lattice and approximate the Laplacian operator into
〈〈X〉〉 − X, which is written as

〈〈X〉〉 = 1

6

∑
XNN + 1

12

∑
XNNN, (8)

where XNN or XNNN indicates the nearest neighboring or the
next nearest neighboring sites of X. Previous studies show
that the average in Eq. (8) optimizes the stability of the CDS
equations. Periodic boundary conditions are imposed on each
direction. The forward Euler algorithm is utilized for the time
integration.

Following our previous work, we set these parameters in
Eq. (7) as M = 1.0, A = 1.26, α = 0.02, η = 0.15L0, C =
1.0, and λ = 0.50. In general cases of CDS, grid spacings δx,
δy and time step δt can be set as large as 1. It is convenient
to choose the grid spacing as the length unit. Thus, the size
of the simulated box is determined by the grid numbers, i.e.,
Nx × Ny. To accommodate to the stripe patterns, Nx is set as
the nearest integer of the expression, Ns × L0 × n, where n is
the value of DM.

III. RESULTS AND DISCUSSION

Obviously, the directing effect is heavily dependent on
the commensurate degree between the periods of the stripe
patterns and the bulk lamellae. Therefore, it is necessary to
determine the bulk period L0 in advance. Through Fourier
transformation of density profiles in 2D simulations, we ob-
tain L0 ≈ 7.86. To ensure the simulated samples large enough,
Ny is fixed as 1024, and Nx is kept around 1000 by regulating
the value of Ns for different n. Consequently, the simulated
system contains more than 100 periodic lamellar domains. A
typical sample is illustrated by the schematic plot in Fig. 1.

In applications targeting on the formation of ordered pat-
terns on a large scale, the ordering time plays a critical role.
Only when tp is acceptable in practice, the ordered patterns
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FIG. 1. Schematic plot of directed assembly of BCPs on chemically pat-
terned substrates in 2D. Red color indicates neutral area for two blocks while
the blue color indicates the stripes with a preferential interaction to A-block.
The stripes are aligned along Y direction.

can be achieved. Otherwise, if the expected ordering time,
when all defects are annihilated, is longer than real evolu-
tion time t, some defects will survive. And the defect con-
centration is dependent on the deficit of evolution time, tp − t.
Accordingly, we focus on exploring the relation between the
ordering time and the characteristic of stripe patterns (e.g.,
DM and commensurate degree) and understanding the order-
ing mechanism of lamellar patterns in chemical epitaxy via
probing into defect evolutions. The knowledge on the order-
ing time is a useful guide for experiments to set annealing
time for specific stripe patterns on the one hand, and the in-
sight on the underlying mechanism is helpful to improve the
design of directing patterns on the other hand.

A. Integer density multiplication

Intuitively, an integer DM is the most favorable for the
stripe patterns to direct ordered lamellae. So we first study
the kinetics of structure formation of BCPs in these ideal sam-
ples with variable integer n between 3 and 16. Here, the field
strength is fixed as V0 = 0.10. For each n, tp is calculated
by averaging over eight independent runs, each of which is
quenched from a disordered state generated by random initial
conditions. In each run, whether the morphology reaches its
perfect state is checked via detecting the defects, every 103

time steps when t ≤ 104 and otherwise every 104 time steps,
using a standard method proposed by Qian and Mazenko
(more details will be given in Subsection III C).55 When no
defects are detected in the morphology, the simulation is ter-
minated, and the time t is recorded as tp.

Typical snapshots of density profiles for a given n = 8
are presented in Fig. 2. There are a number of notable fea-
tures. First, ripely separated domains in Fig. 2(a) at t = 1000
indicate that the phase separation occurs suddenly as soon
as the simulation is triggered from the disordered state be-
cause of the spinodal phase separation. Second, well aligned
lamellae are formed immediately with precisely registered po-
sitions on the stripes after the phase separation. The stronger
segregation around the stripes as well as the propagation of
aligning order beyond the extent of stripes suggests that the
field strength V0 = 0.10 is very high. The preformed ordered
lamellae directed by stripe patterns divide the entire sample
into Ns identical subsections, each of which becomes uncor-
related and thus evolves independently. The morphology in
each subsection is still intervened by a mess of defects which

FIG. 2. Typical snapshots of density profiles of A-block with n = 8 and
V0 = 0.10 at (a) t = 1000, (b) t = 3000, (c) t = 5000, and (d) t = 10 000.
The insets are the enlarged portion in the small box for each snapshot, where
defect domains are highlighted by dashed lines in different colors.

are not well separated at the initial stage in Fig. 2(a). As time,
more and more isolated domains with mismatched orienta-
tion from that of stripes are formed, and here these domains
are defined as defect domains. The third interesting feature
is that some big defect domains (indicated by purple dashed-
lines) tend to split into a number of child domains while the
others (indicated by red dashed-lines) as well as the new-born
child domains directly shrink until evanishing. The splitting
behavior is induced by the meeting of the propagation order-
ing events triggered by two neighboring stripes.

Obviously, the ordering time is dependent on the value
of DM, n. The ordering time for varying n is determined
in our simulations, and that as function of n is drawn into
a double-logarithm plot in Fig. 3. This function of ordering
time can be well fitted into linear formula except for a few

FIG. 3. The ordering time tp is a function of n in the logarithm-logarithm
plot. The solid line is the linear fit of the data.
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points at small value of n. This linear relation implies that the
ordering time is dependent on n with a power law function as
tp ∼ n1/ν , where ν is estimated as 0.25. In the bulk lamellar
morphologies, the evolution of correlation length ξ is often
used to measure the ordering process. It has been proposed
that ξ evolves as time according to the power law of ξ ∼ tη,
where η is between 0.20 and 0.30. In the current sample, the
morphologies become perfectly ordered as soon as the corre-
lation length is comparable to the period of stripes because the
entire sample has been divided into independent subsections
by these stripes. Consequently, the largest correlation length
to be reached during evolution can be seen approximately as
n × L0. By virtue of the bulk formula of correlation length,
we get n × L0 ∼ t

η
p , i.e., tp ∼ n1/η. This simple analysis di-

rectly interprets the nice agreement between the coefficients
ν in the samples of chemical epitaxy and η from the bulk sys-
tems, and implies that the defects in each subsection obey the
similar evolving mechanism as those in bulk. This power law
relation clearly shows a scenario how the ordering time de-
pends on DM in the samples with ideal commensurability. In
particular, the large coefficient of power law indicates that the
expected ordering time is tremendously prolonged for a small
increment of n. For example, with n = 8, the ordering time tp
= 17 200. When n is only increased to 9, tp goes up to 28 400,
which is 65% longer than that of n = 8. Note that the de-
viation of the points at small n simply arises from the time
interval used in the check of perfect order which is compara-
ble to the magnitudes of tp on these points. In other words, the
values of tp are overestimated.

In order to verify the universal power law relation with
respect to the field strength, which can be readily modulated
by the time and dose of exposure in experiments, a number
of magnitudes, V0 = 0.050, 0.010, 0.005, and 0.001, are con-
sidered in our simulations. Our results show that perfectly
ordered lamellae can be achieved for n < 16 with the first
three field strengths, but longer ordering time is required for
weaker field strength. For example, given n = 10, the or-
dering time tp = 46 500, 51 400, 92 000, and 504 900 for
V0 = 0.10, 0.05, 0.01, and 0.005, respectively. In contrast, for
the last systems with V0 = 0.001, the morphologies are still
not perfectly ordered even when t exceeds 106, which corre-
sponds to a feasible annealing time in experiments (e.g., 1–3
days). The influence of field strength on the ordering process
can be directly manifested by the comparison of density pro-
files in the early stage, t = 1000, for a given n = 8 in Fig. 4.
Obviously, the ability, that the striped potential wells facilitate
the formation of well aligned lamellae which guide the order-
ing evolution of other portions of morphology, is weakened by
the reduction of field strength. In other words, more and more
defects cross over the field stripes, and thus make these sub-
sections become less and less independent. In particular, for
V0 = 0.001, the existence of stripe patterns is indiscernible
in the morphology, and as a consequence, the ordering pro-
cess is similar as that in the bulk. Apparently, a critical value
of V0 for ordered morphologies is between 0.001 and 0.005,
and V0 ≈ 0.05 is an ideal value because it gives a fairly sim-
ilar directing effect as that of higher V0 = 0.10. A universal
power law is verified in the samples of V0 = 0.05, 0.01, 0.005
with slightly different coefficients within a narrow range of

FIG. 4. Typical snapshots of density profiles at t = 1000 with n = 8 for
different V0. The insets are the enlarged portion in the small box for each
snapshot, where the area of chemical patterns and vicinity are highlighted by
red dashed-line box in (b), (c), and (d). Purple dotted-lines are imposed in (d)
to indicate the indiscernible locations of stripe patterns.

0.25 ∼ 0.30. Our kinetic results are in good agreement with
those of thermodynamics by Nagpal et al. which suggest that
the stability of defects is sensitive to the field strength.45 In
the view of kinetics, defects with higher stability survive for
a longer time.

B. Non-integer density multiplication

During the achievement of ordered nanostructures via di-
rected assembly of BCPs, substrates with periodic chemical
patterns play a central role in the whole ordering process.
During the fabrication of stripe patterns via the electron beam
or extreme ultraviolet lithography technique, an error is in-
evitably introduced into the value of DM and makes it de-
viate from ideal integer multiples. This incommensurability
induced by the small deviation will result in more packing
frustration of domains between the BCP period and the stripe
period, and thereby impact the ordering process of morpholo-
gies. Accordingly, we systematically investigate the depen-
dence of ordering time on the degree of incommensurability.
The ordering time of varying n, between 2.3 and 7.5 with an
increment of 0.1, for fixed V0 = 0.10 is shown in Fig. 5(a),
and accordingly, a window for perfectly ordered patterns is
determined by setting a time cutoff as 106 in Fig. 5(b). Intu-
itively, the landscape of free energy of BCPs is always cor-
rugated by the packing frustration arising from the incom-
mensurability. In kinetics, the evolution of samples with non-
integer n are more easily trapped in a metastable state than
those with integer n. Consequently, a longer ordering time
is needed for the samples with higher degree of incommen-
surability. For example, the ordering time is 10 000, 14 200,
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FIG. 5. (a) Ordering time tp as a function of varying n. (b) Domain number
(Num) plot of lamellae formed on the substrates with varying n, where red
lines indicate the estimated centers of windows of perfectly ordered lamellae,
n0. Open symbols indicate ordered patterns while crosses indicate unordered
ones within a time cutoff, 106.

11 200, and 279 000 for n = 7.1, 7.3, 6.9, and 6.7 while the
ordering time of n = 7.0 is 9200. These results give a defi-
nite emphasis on the resolution control in the fabrication of
substrates on the one hand, and suggest that a certain degree
of incommensurability can be tolerated by the systems on the
other hand but at expense of longer ordering time. So long
as the expected ordering time is feasible in practical exper-
iments, the ordered lamellar pattern can be generated. Note
that the center of windows in Fig. 5(b), indicated as n0, is
slightly larger than the corresponding integer n. It suggests
that BCP domains prefer to be stretched when suffering the
incommensurability of periods, which is consistent with the
results of Nagpal et al.45 Centering around n0, the logarithm
of ordering time, ln (tp), can be approximated as a quadratic
function of (n − n0), i.e., ln (tp) ∼ (n − n0)2 + ln (tp, 0), where
tp, 0 is the ordering time of corresponding n0. Ross et al. pro-
posed that the free energy deviation induced by the incom-
mensurability can be estimated as δE ∼ (n − n0)2.7 As a con-
sequence, we get tp ∼ eδE, which is similar as the well-known
kinetic Arrhenius equation.

C. Defect evolution during the ordering process

To understand the ordering mechanism of BCP lamellar
patterns under the direction of sparsely striped patterns, it is
necessary for us to probe into the evolution of defects during
the ordering process. Here, we adopt the method proposed by

Qian and Mazenko55 to identify defects, which is illustrated
in Fig. 6 of both the bulk sample and directed sample. First,
the density configuration with or without potential fields in
Fig. 6(a) or 6(d) is transformed into scalar fields in Fig. 6(b) or
6(e), which quantify the local orientation in a range of (− 90◦,
90◦]. Compared with the bulk sample, there exists a predom-
inant orientation with lamellae in the directed sample, which
is guided by the stripe patterns. In addition, these domains,
defined as defect domains with mismatched orientations from
the predominant one, are isolated islands in the sea of ordered
domains. Usually, defects are clustered on the boundaries of
these domains. And then, the finite differential method is ap-
plied onto the scalar fields to identify these defects as in
Figs. 6(c) and 6(f). In order to quantify the defect evolution,
defect concentration, φdef, is introduced and defined as the ra-
tio of defect area (e.g., the red dots in Figs. 6(c) and 6(f)) to
the entire sample area. For the directed samples, the number
of defect domains, Ndm, is also recorded as a complementary
quantity for revealing the underlying mechanism.

In order to focus on the defect evolution and give promi-
nence to the influence of the DM on it, we choose integer
n and fix the field strength V0 = 0.10. The defect concentra-
tions as function of time for n = 6, 7, . . . , 16 are presented in
Fig. 7, where that in the bulk is also shown as a comparison
(solid line). In bulk samples, the defect concentration, which
is conjugated with the correlation length, evolves according to
the power-law function discussed before. Obviously, the po-
tential fields alter the evolution of defect concentration into
two stages of power law, where the second one has larger co-
efficient than the first one. In other words, the defect annihila-
tion is accelerated in the second stage, and thus the perfectly
ordered pattern can be yielded in a limited time. Therefore,
the time, when the morphology evolution enters from the first
stage into the second, is critical. We notice that defects go
through distinctive evolving behaviors in above two stages:
splitting and evanishing via shrinking of defect domains (see
Fig. 2). In fact, the two evolving behaviors happen concomi-
tantly while one of them is dominant in a specific stage. The
number of defect domains, Ndm, which is a relevant quantity
to clarify the dominant behavior, is determined and given in
Fig. 8(a). There is a marked maximal number of defect do-
mains during the evolution, which divides the defect evolu-
tion into splitting and evanishing dominant stages. In the first
stage, splitting large defect domains into a number of subdo-
mains dominates over evanishing of small domains, thereby
increasing Ndm. After the maximum point, the decrease of
Ndm indicates that evanishing becomes dominant instead in
the second stage. Interestingly, the critical time tmax as a func-
tion of n in Fig. 8(b) has a similar power law behavior as the
ordering time tp.

After entering the second stage, defect domains evolve
independently and shrink until evanishing. These defect do-
mains in samples with distinct n assemble similar char-
acteristics except for their sizes which are determined by
the period of stripe patterns. In kinetics, they share the
similar evolving behavior. This feature can be directly il-
lustrated by the evolution of defect concentration with
a time shift of corresponding tmax in Fig. 9. That the
second-stage portions of these curves for diverse n are well
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FIG. 6. Illustration of identifying defects in the sample with (bottom row) or without (upper row) stripe patterns. The figures in three columns from left to right
correspond to density configurations [(a) and (d)], scalar fields of orientation [(b) and (e)], and defect distributions [(c) and (f)] (defects are plotted into red
color), respectively. The color spectrum indicates local orientation of lamellar domains in a range of (− 90◦, 90◦].

overlapped justifies that the common evolution is a typical
power law.

During the directing processes of BCP self-assembly, or-
dered patterns are often achieved by imposing an anisotropic
force, such as electrical field, shearing flow, and thermal gra-
dient. In the present directing scheme of chemical epitaxy,
the anisotropy is introduced by the stripe patterns. In contrast,
this anisotropic property is localized near the stripes, which
affords the two-stage ordering evolution discussed above. As
an example, we focus on the sample, n = 15 and V0 = 0.10,
to examine the appearance of anisotropy during ordering pro-
cesses. Here lx and ly are used to characterize the average
sizes of defect domains along X- and Y-axis, respectively. In
Fig. 10, both lx and ly decline to zero when all defect do-
mains shrink toward evanishing. Obviously, the presence of
anisotropy originating from the stripe patterns results in dif-

FIG. 7. Evolution of defect concentrations for various n in a logarithm-
logarithm plot. As a comparison, the data in the bulk are indicated by the
solid line.

ferent declining speed between lx and ly. For ly, in the first
stage of evolution, the dominant splitting events induce a
sharp drop from an initial value which is comparable with
the size of entire sample along Y-axis. In contrast, lx with an

FIG. 8. (a) Evolution of the number of defect domains, Ndm, for n = 2, 3,
. . . , 16, and V0 = 0.10. (b) critical time tmax with respect to n. The red line is
the linear fit to the data.
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FIG. 9. The defect concentration curves of Fig. 7 are shifted with corre-
sponding critical time tmax. For the reason of clarity, the error bars are not
shown.

initial value comparable with n × L0 decreases slowly. This
provides a further support for the existence of splitting events.

D. Conclusions

In summary, we study in a systematic manner the evo-
lution of lamellae formed by symmetric BCPs under the di-
rection of sparsely stripe patterns. Our results unveil a scaling
law between the ordering time and integer density multipli-
cation, which is proven to arise from the power law found in
the bulk. Importantly, this scaling law is universal with V0 as
long as V0 is strong enough for the direction of ordered pat-
terns. With samples of non-integer density multiplication, the
impact of the degree of incommensurability on the ordering
time is investigated and well described by an Arrhenius-like
kinetic formula. This indicates that the incommensurability
in a certain degree can be kinetically tolerated in the direct-
ing scheme at the expense of prolonging annealing time. Our
results provide a useful guide for the estimation of expected
ordering time with a given integer or non-integer density mul-
tiplication. In addition, to understand the underlying ordering
mechanism in depth, we probe into the evolution of defects. A
two-stage evolution, splitting dominant and evanishing domi-
nant, is proposed. In the first stage, large defect domains tend
to split into subdomains and thus the number of defect do-
mains is increased. Whereas, in the second stage, most of de-

FIG. 10. Evolution of the average sizes of defect domains along X/Y-axis,
lx and ly.

fect domains shrink until evanishing, which leads to a contin-
uous decrease in the number of defect domains. Furthermore,
the role of anisotropy arising from the stripe patterns on the
ordering evolution is also discussed via tracing the average
sizes, lx and ly, of defect domains as time. Based on the above
results, the directing stripes take effect on the ordering evo-
lution of lamellae in two aspects. On the one hand, the peri-
odic stripes divide the large sample into narrow subsections in
x direction, thereby speeding up the ordering evolution along
X-axis. On the other hand, the ordering of lamellae propagates
from the locations of stripes where well registered lamellae
are preformed at the initial stage, and it penetrates the sub-
sections, which divides large defect domains into subdomains
along Y-axis. Therefore, the reduced size along Y-axis accel-
erates the shrinking process of these defect domains further.

Although our simulations are performed in 2D, where
our model corresponds to perpendicular lamellar morphology
formed in a thin film without considering the effect of film
thickness, our results of the ordering time and the ordering
mechanism are commonly useful for perpendicular lamella-
forming thin films in experiments. In the case of chemical
epitaxy, as a limited strength of fields can be usually gen-
erated by surface chemical modification, a high DM cannot
be achieved.35 In fact, our model with a strong field is par-
ticularly suitable to describe the perpendicular lamellar for-
mation under the direction of geometrical trenches which has
been realized in experiments, where a higher DM has been
yielded.56, 57 In addition, our results are instructive for the for-
mation of parallel cylinders formed in trenches because of
the similar smectic ordering process. We can expect a sim-
ilar scaling law with the ordering time but with a different
coefficient.
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